What's New For GIST Patients

Jon Trent, MD, PhD

Professor of Medicine Director, Bone and Soft-tissue Sarcoma Associate Director, Clinical Research Sylvester Comprehensive Cancer Center *GIST Center of Excellence*

Twitter: @JTrentMDPhD Email: jtrent@med.miami.edu

UNIVERSITY OF MIAMI HEALTH SYSTEM

The Emerging Role of Circulating Tumor DNA in Gastrointestinal Stromal Tumor

Steve Bialick, DO, MS Hematology/Oncology Fellow, PGY6 Sylvester Comprehensive Cancer Center

UNIVERSITY OF MIAMI HEALTH SYSTEM A Cancer Center Designated by the National Cancer Institute

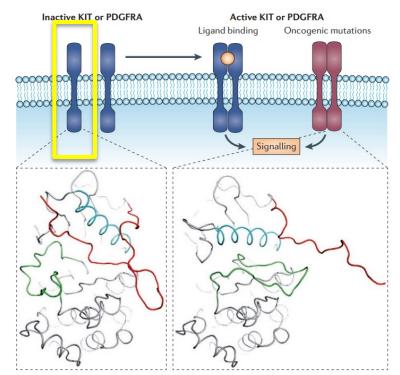
Comprehensive Cancer Center

- Most common **GI sarcoma**
 - 1-2% of all primary GI malignancies
 - 4500-6000 cases annually in US
- Treated with tyrosine kinase inhibitors
 - Prevalence > incidence
 - Clinical course >10-15yr (from pre-TKI era <12 mo)
- Peak incidence 40-60 yo
 - GISTs unusual in pts <40yo
 - M = F predominance
- High frequency of metastatic disease, commonly abdominal

GIST OVERVIEW

Junaid Arshad, Jonathan C. Trent. JCO Precision Oncology 2020:4, 66-73. Søreide, Kjetil et al. *Cancer epidemiology* vol. 40 (2016): 39-46.

KIT


- 70-80% of GISTs
- Constitutive activation
- Most-common = exon 11, exon 9
- In-frame del*, insertions, substitutions, or combo

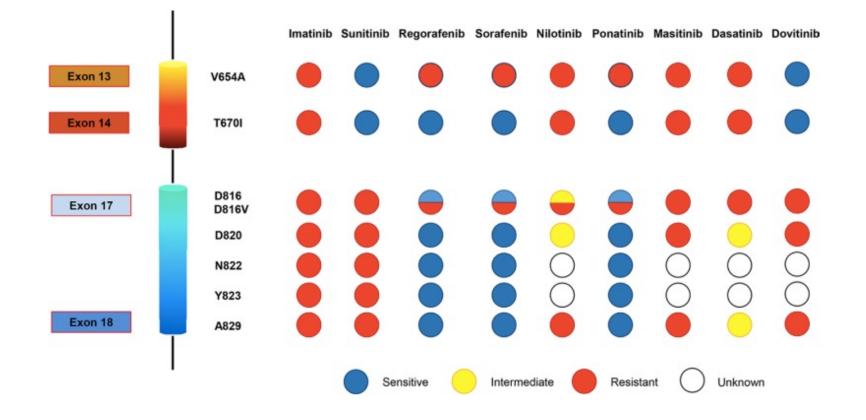
PDGFRα

- 5-10% of GISTs
- Constitutive activation
- Most-common = exon 12, exon 14, exon 18

KIT/PDGFR WILD TYPE

- 10-15% of GISTs
- RAF, RAS, SDH, NTRK

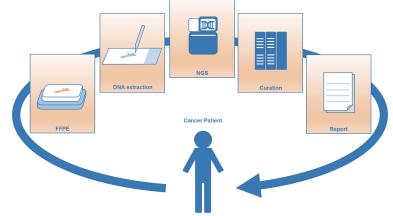
KIT and PDGFRA structure and mutations.


GIST DRIVER MUTATIONS

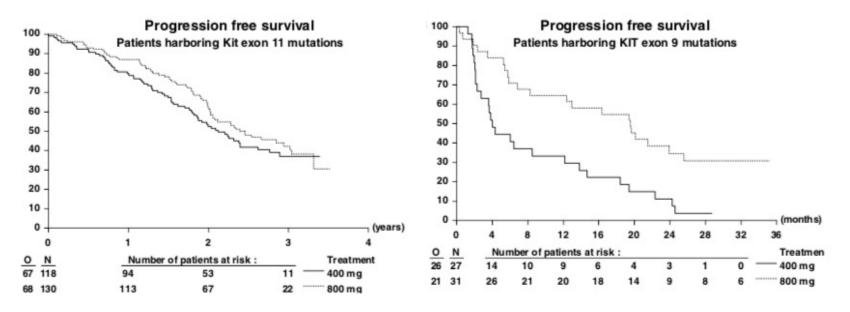
Christopher Corless, Christine Barnett, and Michael Heinrich. *Nature Reviews Cancer*. 2011: 11, 865-878. Incorvia et al. *Cancers*. Feb 2021.

- KIT exon 11: imatinib 400 mg
- KIT exon 9: imatinib 800mg (or tolerated dose)
- PDGFR D842V: avapritinib
- SDH deficiency: sunitinib or regorafenib (TMZ trial)
- RAF V600E: RAF inhibitor
- NF-1, RAS: RAF or MEK inhibitor
- PI3K: mTOR inhibitor
- IGF-1R expressing IGF-1R inhibitor trial
- TRK fusion larotrectenib (NTRK inhibitor)
- KIT resistance mutations
 - Exon 13 (ATP binding site): sunitinib 37.5 mg daily
 - Exon 17 (A-loop): regorafenib or ripretinib

GIST TREATMENT BY SUBTYPE

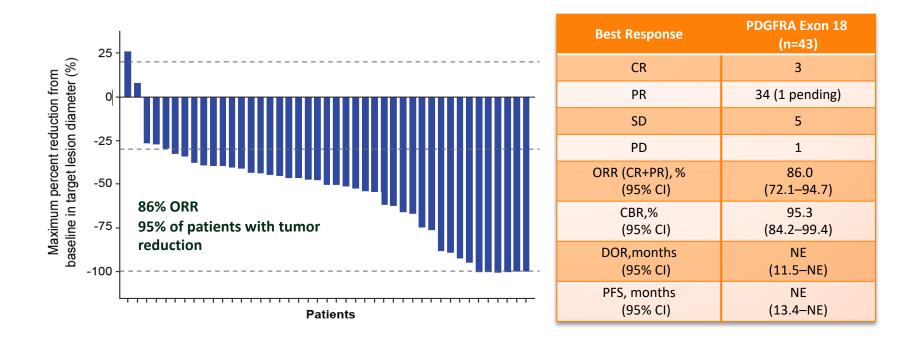

Jon Trent, MD PhD. *Miami Precision Medicine*. Apr 2022.

KIT SECONDARY MUTATIONS


Serrano et al. Oncotarget, 2019, Vol. 10, (No. 59), pp: 6286-6287

- Optimal therapy for GIST patients requires mutation testing.
- **Comprehensive**, **effective** in identifying tumor mutations
- Performed commonly on pretreatment tumor biopsy and resection specimens
- Invasive, requires adequate tissue quantity
- Lengthy turnaround times

MOLECULAR DIAGNOSTIC TESTING


Boonstra et al. *Oncotarget*. 2018; 9:13870-13883. Nagahasi et al. *Cancer Science*. 2019;110:6–15.

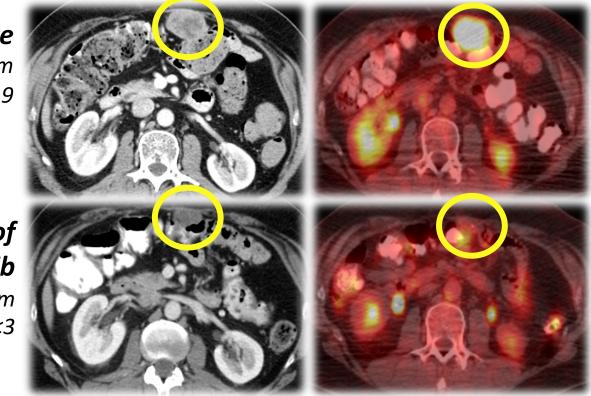
	Imatinib 800mg	Imatinib 400mg
Exon 9 mPFS	20 months	4 months
Exon 11 mPFS	30 months	27 months
Overall mPFS	27 months	24 months

NGS/GIST: KIT EXON 11 VS EXON 9

Debiec-Rychter et al. European Journal of Cancer. May 2006.

- NAVIGATOR study with BLU-285
- Antitumor activity with avapritinib in patients with PDGFR D842V mutation

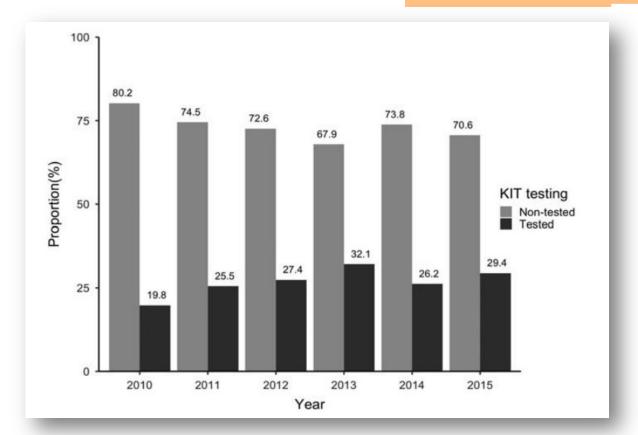
NGS/GIST: PDGFRα EXON 18


CBR = clinical benefit rate CI = confidence interval CR = complete response NE = not evaluable PD = progressive disease

- PR = partial response
- SD = stable disease

Heinrich et al. The Lancet Oncology. 2020; 21:935-46.

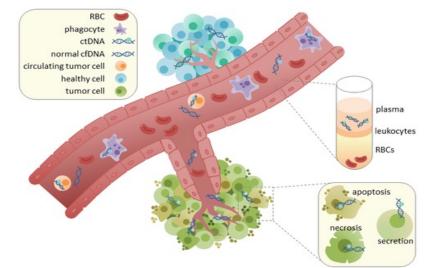
Baseline 4.5x3.2cm SUV 9.9


C4D21 of regorafenib 3.0x1.6cm SUV <3

 Radiographic and metabolic response in pt with KIT exon 11 and KIT exon 17 resistance mutation by tissue NGS, treated with next-line regorafenib

NGS/GIST: KIT EXON 17 (D820Y) + REGORAFENIB

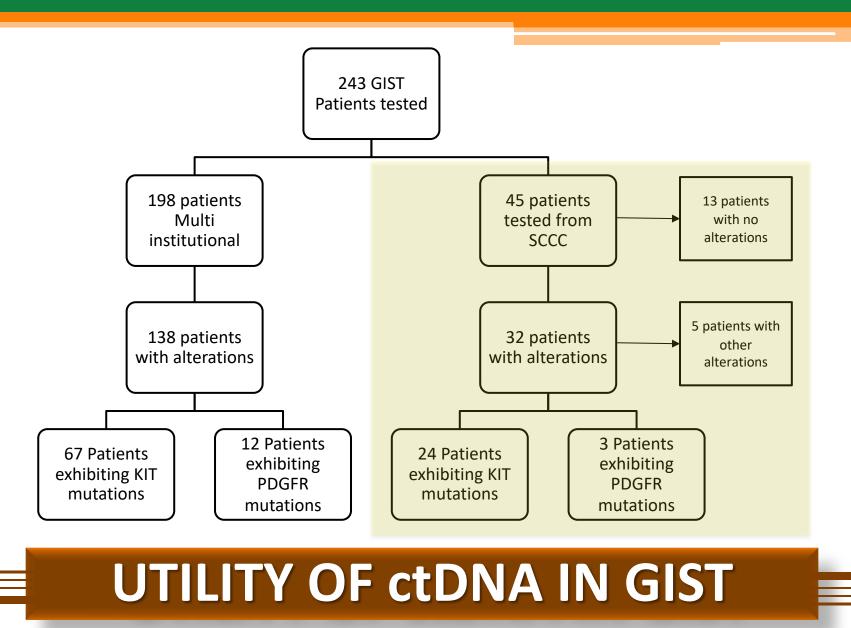
Serrano, C., Mariño-Enríquez, A., Tao, D.L. et al. British Journal of Cancer. 2019.


<u>SEER review</u>: only ~30% of pts diagnosed with GIST (2010-2015) underwent mutational analysis

GIST MUTATION TESTING IN USA

Florindez and Trent. Low Frequency of Mutation Testing in the United States: An Analysis of 3866 GIST Patients. *American Journal of Clinical Oncology*, April 2020. 43 (4), 270-278.

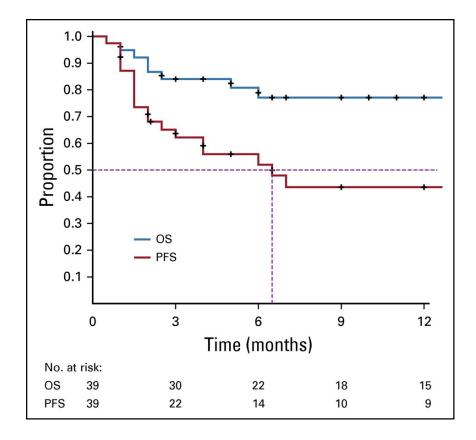
- Provides a rapid, noninvasive analysis of current mutations
- Clinical applications in multiple solid tumor cancers
 - emerging predictive value in patients with metastatic GIST


- May help define optimal choice of therapy based on resistance mutations
 - KIT resistance mutations in GIST
 - Exon 13
 - Exon 17

INTRODUCTION TO LIQUID BIOPSY

- ctDNA = free, tumor derived DNA in blood (1% of cfDNA)
- cfDNA = free, circulating DNA in blood (of tumor + nontumor origin)

Junaid Arshad, Jon Trent, et al. *JCO Precision Oncology* no. 4 (2020) 66-73.


Junaid Arshad, Jon Trent, et al. JCO Precision Oncology no. 4 (2020) 66-73.

	ctDNA Mutation+	Tumor FFPE Mutation+	Detection Rate
All Patients	22	36	61% 🔶
Primary Tumor	0	6	0%
Metastatic Low Volume	1	6	16%
Metastatic and Responding	0	3	0%
Metastatic, Large, and Progressive	21	21	100%

UTILITY OF ctDNA IN GIST

Junaid Arshad, Jon Trent, et al. JCO Precision Oncology no. 4 (2020) 66-73.

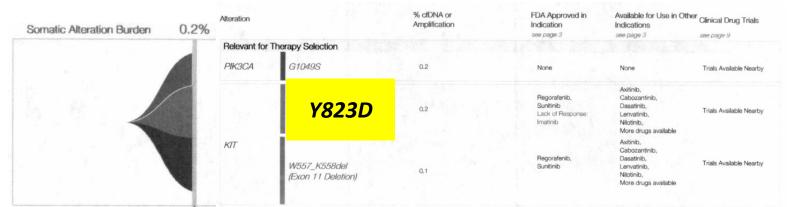
* Large = sum of 3 largest lesions \geq 10 cm

12 months from ctDNA testing (*n* = 39):

OS = 79.5%; CI 0.66-0.92 **PFS** = 46.2%; CI 0.32-0.65

UTILITY OF ctDNA IN GIST

Arshad, Trent, et al. JCO Precision Oncology no. 4 (2020) 66-73.

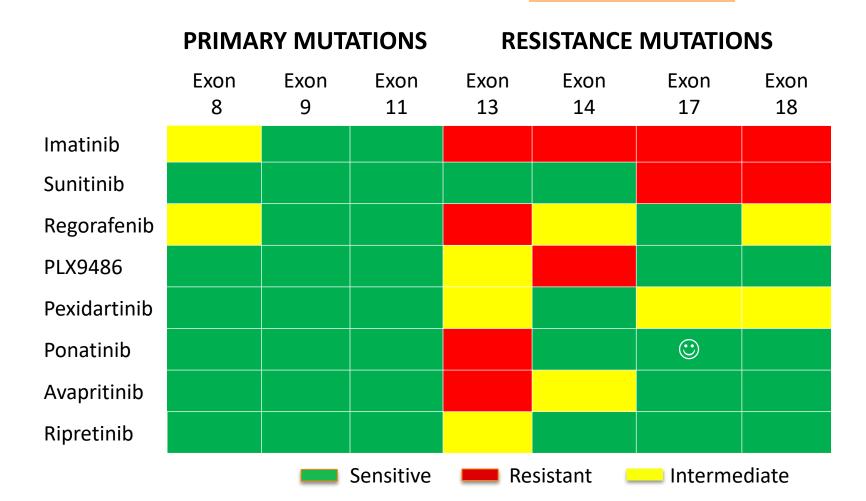

55yo Caucasian male with stage IV gastric GIST (KIT exon 11 W557-558del), liver and intraabdominal metastases

Progressive disease w/

- 1. Imatinib
- 2. Sunitinib

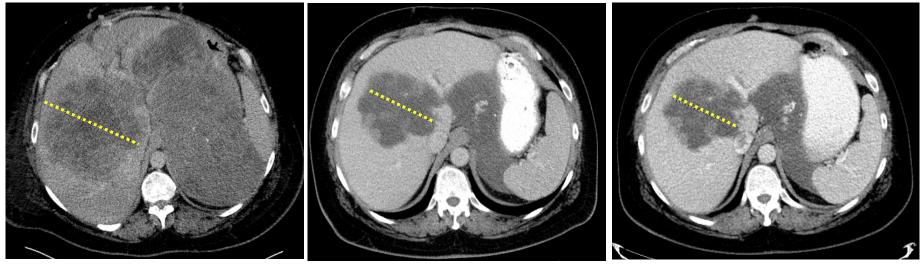
3. Regorafenib \longrightarrow Referred to hospice

- 4. Pazopanib
- 5. Nilotinib


CASE PRESENTATION

Heinrich et al. JCO 21.23 (2003): 4342-4349.

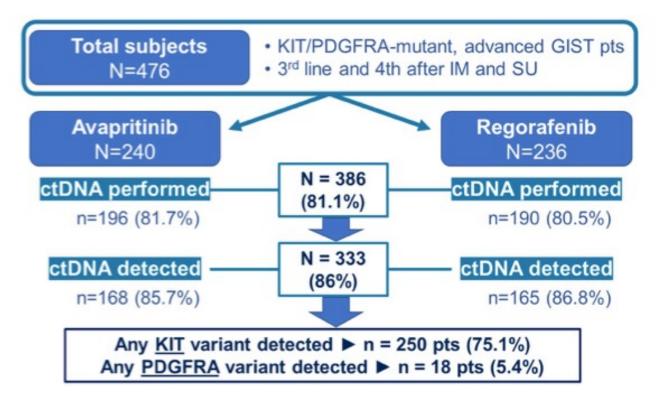
Liquid


biopsy via

ctDNA

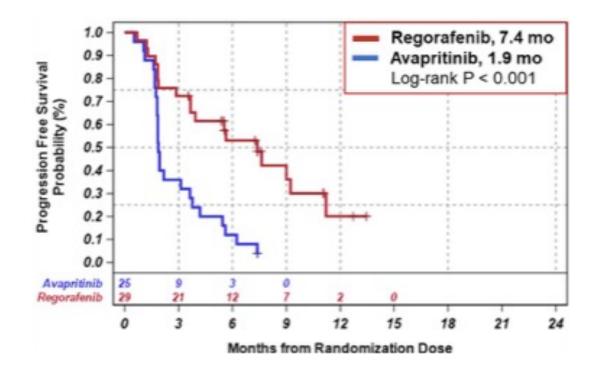
KIT SECONDARY MUTATIONS

Junaid Arshad, Jonathan C. Trent. *JCO Precision Oncology* 2020. Trent, CTOS 2017. Serrano BJC 2018. Gramza et al, Clinical Cancer Research 15:7510, 2009 Heinrich et al, ASCO 2013 Poster/Abstract 10509


Baseline; **before** ponatinib

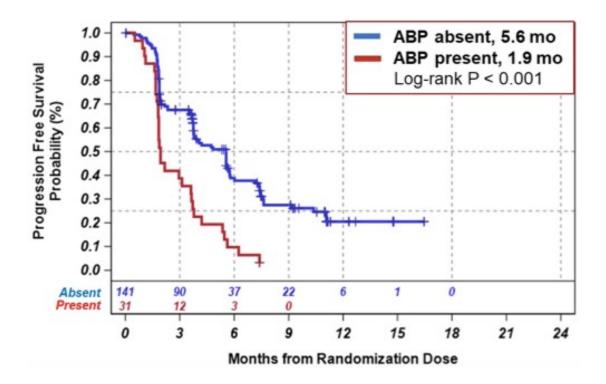
After **6 months** of ponatinib

After **12 months** of ponatinib


DISEASE RESPONSE

ctDNA analyses in phase III VOYAGER trial: KIT mutational landscape and outcomes in pts with advanced GIST

VOYAGER Trial


Serrano et al. ASCO 2022.

Patients with **Kit exon 13 resistance mutations** are progression free longer when treated with **regorafenib** over avapritinib

VOYAGER Trial

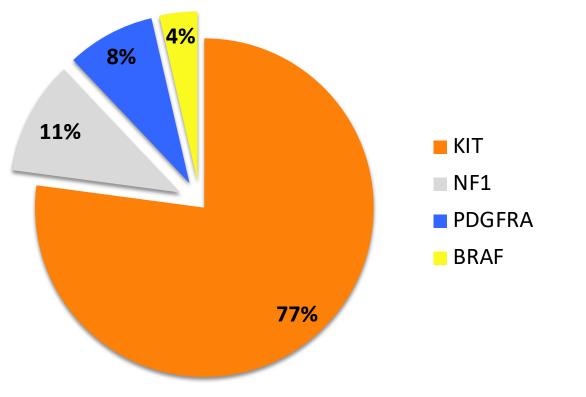
Serrano et al. ASCO 2022.

Patients without **KIT exon 13 resistance mutation** remain progression free on **avapritinib** compared to regorafenib

VOYAGER Trial

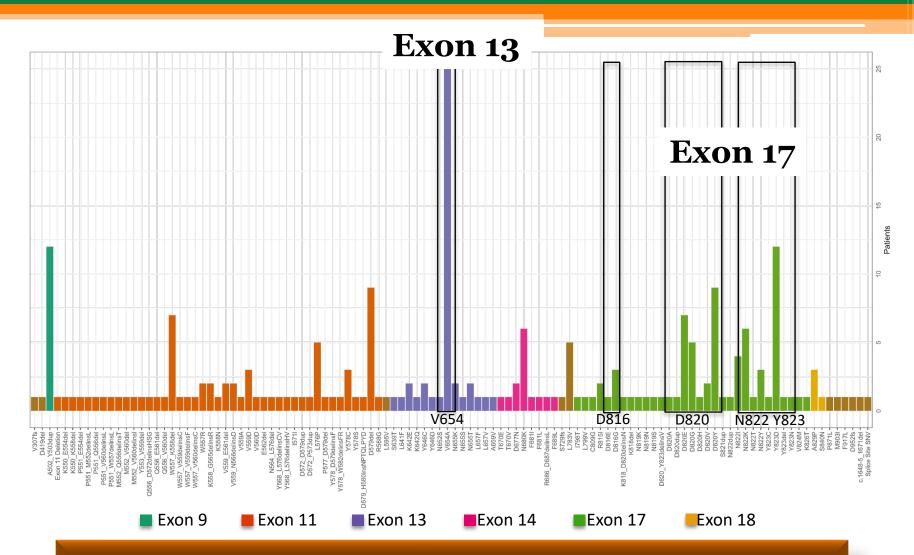
Serrano et al. ASCO 2022.

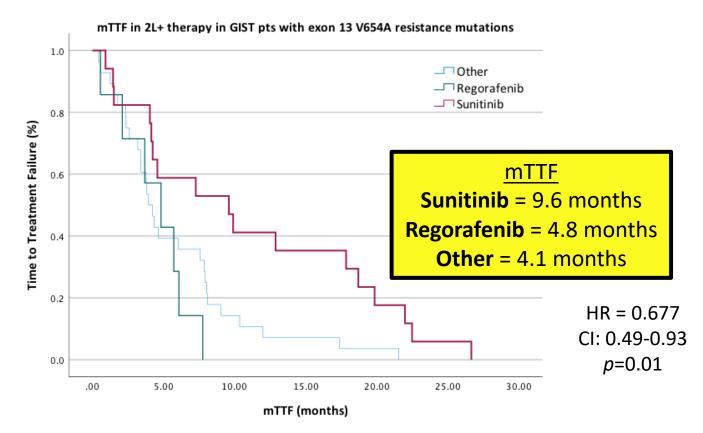
ctDNA AND KIT RESISTANCE MUTATIONS


KIT Resistance Mutations Identified by Circulating Tumor DNA and Treatment Outcomes in Advanced Gastrointestinal Stromal Tumor. *Poster discussion session at ASCO 2022.*

Steve Bialick, DO, MS

Hematology/Oncology Fellow, PGY6 Sylvester Comprehensive Cancer Center


- *KIT*-mutant GIST patients benefit from first-line (1L) imatinib
- *KIT*-resistance mutations confer differential sensitivity to subsequent TKI



- Patients with common driver mutation (n=83)
- Patients with *KIT* mutation (n=64)

COMMON GIST DRIVER ONCOGENES BY ctDNA

SPECIFIC KIT ALTERATIONS DETECTED

Patients with Kit exon 13 resistance mutations do twice as well on sunitinib then regorafenib

2L+ mTTF KIT EXON 13 (V654A) PATIENTS

- ctDNA is a noninvasive tool for detecting driver and resistance mutations in pts with advanced GIST.
- GIST pts with ctDNA is an emerging technology which may impact therapeutic decision-making
- ctDNA-guided therapy warrants evaluation in a prospective clinical trial: Phase II Study of ctDNA-guided Sunitinib and Regorafenib Therapy for Gastrointestinal Stromal Tumor (GIST)

Medical Oncology

- Jon Trent
- Gina D'Amato
- **Emily Jonczak**
- Aditi Dhir (ped)

Nurse Practitioner

- **Morgan Smith**
- Solange Sierra
- Alisette Naveda

Pathology

- Andrew Rosenberg
- **Elizabeth Montgomery**
- Daniel Cassidy
- Jay-Lou Velez Torres

Radiology

- Ty Subhawong
- Francesco Alessandrino

Orthopedic Oncology

- Fran Hornicek
- Tom Temple
- Sheila Conway
- Frank Fismont
- Juan Pretell
- Mo Al Maaieh

Surgical Oncology

- Nipun Merchant
- Alan Livingstone
- Dido Franceschi

Radiation Therapy

- **Raphael Yechieli**
- Aaron Wolfson
- Laura Freedman

Thoracic Surgery

- Dao Nguyen
- Nestor Villamizar

Head & Neck Surgery

- Zoukaa Sargi
- Frank Civantos

Interventional Radiology

- Shree Venkat •
- Felipe Desouza

Gynecologic Oncology

- Matt Schlumbrecht
- Matt Pearson
- Marilyn Huang **Clinical Research**
- **Josefina Sanchez**
- Melissa Serana
- Mirna Gonzalez
- Karyms Luna

Nursing

- Arlen Pita
- Elizabeth Hagen
- Rosie Jara

Lab Research

- Zhefeng Duan, PhD •
- Luyuan Li, PhD
- Karina Galoian
- Josie Eid, PhD

Fellows/Residents

- Priscila Barreto-Coelho
- **Steve Bialick**
- **Philippos Costa**
- Andrea Espejo-Freire

SYLVESTER TEAM SARCOMA

Neha Goel

Thank You!

A Cancer Center Designated by the National Cancer Institute