KNIGHT DIAGNOSTIC LABORATORIES

Pioneering Personalized Diagnostics

Diagnosing and Predicting the Behavior of GI Stromal Tumors

Christopher Corless, MD, PhD Professor of Pathology, Oregon Health & Science University Director, Knight Diagnostic Laboratories

GI Stromal Tumor

- Comprise only 0.2% of all GI tumors, but 80% of GI sarcomas
- 5000 6000 new cases per year in the U.S.

Tumor Biopsy

Endoscopic Biopsy

Specimen sent to Pathology lab in formalin

Standard (Rotary) Microtome

For sectioning paraffin-embedded tissues

Sectioning a paraffin-embedded biopsy

Ribbon of biopsy sections floated on waterbath

Novelli M. et al. Histopathology 2010; 57(2):259-270.

Like GISTs, ICC cells:

- express KIT
- express DOG1
- express ETV1

Linden DR, Farrugia G. Autonomic Control of Gastrointestinal Function. In: Low PA, Benarroch EE, eds. Clinical Autonomic Disorders. 3rd ed. Baltimore, MD: ©Lippincott Williams & Wilkins; 2008:88-105

Interstitial Cells of Cajal

Mouse Model Of GIST

Micro-GISTs

- GISTs < 1 cm are common in the general population
 - 10-30% in the stomach
 - <0.2% in the colon & appendix
- Compared with larger GISTs, micro-GISTs have:
 - Similar KIT mutations
 - Lower mitotic index
 - Benign morphology

Corless et al. Am J Pathol, 2002 Rossi et al. 34:1480-1491, 2010 Agaimy et al. Am J Surg Pathol 31:113-130, 2007 Agaimy et al. Am J Surg Pathol 32:867-873, 2008

GIST Progression

KIT and PDGFRA Mutations in GIST

'Wild-type' tumors: 15%

Genetic Alterations in Wild-type GISTs

Molecular Subtypes of GIST

GIST Stage And Risk At Presentation Prospective Population-Based Study

- During a 2 year period, 115 GISTs were diagnosed in the Rhone Alps region of France.
- Among these:
 - 88% had not spread
 - 36.5% were low or very low risk
 - 35.6% were intermediate risk
 - 27.7% were high risk
 - 12% were metastatic

GIST Management

Morphology CD117+ DOG1+

+ Low ris

Low risk of recurrence

High risk of recurrence or metastatic Treat with imatinib?

SDHB Stain

Imatinib -> No

- Tumor size
- Tumor location

Mitoses per 5 mm²

KIT exon 11 mutation \rightarrow 400 mg imatinib KIT exon 9 mutation \rightarrow 800 mg imatinib PDGFRA D842V \rightarrow no imatinib (clinical trial)

Primary GIST – Risk of Recurrence

	Size	Gastric (n=1055)	Jejunum/Ileum (n=629)	Duodenum (n=144)	Rectum (n=111)
Mitotic	$\leq 2 \text{ cm}$	0%	0%	0%	0%
Index	$> 2 \le 5 \text{ cm}$	1.9%	4.3%	8.3%	8.5%
\leq 5 per 5 mm ²	$> 5 \le 10 \text{ cm}$	3.6%	24%	Insuff. data	Insuff. data
	> 10 cm	10%	52%	34%	57%
Mitotic	\leq 2 cm	(None)	(High)	Insuff. data	54%
Index	$> 2 \le 5 \text{ cm}$	16%	73%	50%	52%
>5 per 5 mm ²	$> 5 \le 10 \text{ cm}$	55%	85%	Insuff. data	Insuff. data
	> 10 cm	86%	90%	86%	71%

Miettinen & Lasota, Semin Diagn Pathol, 23(2):70-83, 2006

Selecting Tumor-Rich Material for DNA Extraction

Coring a block

Scraping slides

Looking for Mutations: DNA Sequencing

Next-Generation DNA Sequencing

Massively parallel sequencing (many sequencing reactions performed simultaneously)

Bible Replication Errors

12 ¶* Honour thy father and thy mother, hy dayes may bee long vpon the land whit LORD thy God giueth thee.

13 * Thou shalt not kill.

Thou shalt commit adultery.

15 Thou mait not freale.

16 Thou thalt not beare falle witneffe ag

17 * Thou shalt not couet thy nighbours h thou shalt not couet thy neighbours wife, no man-servant.nor his maid-servant.nor his ox

> 1632 Edition The 'Wicked Bible'

GIST Genome Errors

KIT Gene Mutation[Pro Tyr Val His Lys]CCT TAT GTT CAC AAACCT TAT ---- CAC AAA[Pro Tyr ---- His Lys]

Activated KIT leads to development of GI stromal tumors

Bible Replication Errors

GIST Genome Errors

1795 Edition Mark 7:27

'Let the children first be filled'

'Let the children first be killed'

KIT Gene Mutation [Ala Thr Val Lys Ser] GCT ACA GTT AAA TCT GCT ACA GAG AAA TCT [Ala Thr Asp Lys Ser]

Summary

- GISTs are a family of tumors arising from mutations in a number of different genes
- Most GISTs probably arise from 'micro-GISTs' through acquisition of mutations or other genetic alterations beyond KIT/PDGFRA/SDH
- Next-gen sequencing is helpful in molecularly subtyping GISTs
- Mitotic index, tumor size and tumor location are the 3 most important factors in determining the likelihood of disease recurrence

Predictive Value of Kinase Genotype In Metastatic GIST Patients On Imatinib

- Exon 11-mutant tumors:
 - Better progression-free and overall survival compared to exon 9 and WT tumors
 - 400 mg is adequate dose
- Exon 9-mutant tumors:
 - Improved progression-free survival when treated with 800 mg imatinib
- PDGFRA D842V-mutant tumors:
 - Resistant

SDH-Deficient GISTs

- Deficient in an enzyme called succinate dehydrogenase
- Nearly always gastric origin
- Multi-nodular growth pattern
- Low mitotic rate, but high rate of recurrence and metastasis
- Poor response to imatinib

Molecular Classification of GISTs

Genetic type	Relative Frequency	Anatomic Distribution	Germline Examples
KIT Mutation	75%		
Exon 8	Rare	Small bowel	1 Kindred
Exon 9 (insertion 502-503AY)	8%	Small bowel, colon	None
Exon 11 (deletions, single nucleotide substitutions, insertions)	65%	All sites	Several kindreds
Exon 13 (K642E)	1%	All sites	3 Kindreds
Exon 17 (D820Y, N822K, Y823D)	1%	All sites	Several kindreds
PDGFRA Mutation	10%		
Exon 12 (deletions, single nucleotide substitutions, insertions)	1%	All sites	2 Kindreds
Exon 14 (N659K)	Rare	Stomach	None
Exon 18 D842V	6%	Stomach, mesentery, omentum	None
Exon 18 (deletions)	2%	All sites	1 Kindred

SDH-Deficient GIST

- Most are due to mutations in *SDHA*, *SDHB*, *SDHC* or *SDHD*
 - At least half of these mutations are germline
 - Propensity to develop:
 - Paraganglioma and GIST (Carney-Stratakis syndrome)
 - Pancreatic neuroendocrine tumor
 - Renal cell carcinoma, Pituitary adenoma
 - Penetrance varies, even among family members